
new-gpio

Version 1.1 – 5 December 2015

Kit Bishop

Document History
Version Date Details

Version 1.0 26 November 2015 Initial version

Version 1.1 5 December 2015 Added PWM control methods in GPIOAccess and GPIOPin

classes in libnew-gpio.so library

Added PWM control in new-gpiotest program

Some reorganisation of contents of this document

Contents

1. Background __ 2

2. Files Supplied ___ 3

3. Basic Installation __ 3

3.1. Installing libnew-gpio.so ___ 3

3.2. Installing the new-gpiotest Program __ 3

4. Description of the libnew-gpio.so Library ____________________________________ 3

4.1. GPIOTypes __ 4

4.1.1. enum GPIO_Result ___ 4

4.1.2. enum GPIO_Direction __ 4

4.2. Class GPIOAccess ___ 4

4.2.1. GPIOAccess Public Methods ___ 4

4.2.1.1. static GPIO_Result setDirection(int pinNum, GPIO_Direction dir); _____________________ 4

4.2.1.2. static GPIO_Result getDirection(int pinNum, GPIO_Direction &dir); ___________________ 5

4.2.1.3. static GPIO_Result set(int pinNum, int value); _____________________________________ 5

4.2.1.4. static GPIO_Result get(int pinNum, int &value); ___________________________________ 5

4.2.1.5. static GPIO_Result setPWM(int pinNum, int freq, int duty); __________________________ 5

4.2.1.6. static GPIO_Result startPWM(int pinNum); _______________________________________ 6

4.2.1.7. static GPIO_Result stopPWM(int pinNum); _______________________________________ 6

4.2.1.8. static int getPWMFreq(int pinNum); ___ 6

4.2.1.9. static int getPWMDuty(int pinNum); __ 7

4.2.1.10. static bool isPWMRunning(int pinNum); _______________________________________ 7

4.2.1.11. static bool isPinUsable(int pinNum); __ 7

4.2.1.12. static bool isAccessOk(); __ 7

4.3. Class GPIOPin __ 7

4.3.1. GPIOPin Constructor and Destructor ___ 8

4.3.1.1. Constructor - GPIOPin(int pinNum); ___ 8

4.3.1.2. Destructor - ~GPIOPin(void); ___ 8

4.3.2. GPIOPin Public Methods __ 8

4.3.2.1. GPIO_Result setDirection(GPIO_Direction dir); ____________________________________ 8

4.3.2.2. GPIO_Result getDirection(GPIO_Direction &dir); ___________________________________ 8

4.3.2.3. GPIO_Direction getDirection(); ___ 8

4.3.2.4. GPIO_Result set(int value); __ 9

4.3.2.5. GPIO_Result get(int &value);___ 9

4.3.2.6. int get(); ___ 9

4.3.2.7. GPIO_Result setPWM(int freq, int duty); ___ 9

4.3.2.8. GPIO_Result startPWM(); __ 10

4.3.2.9. GPIO_Result stopPWM(); __ 10

4.3.2.10. int getPWMFreq(); __ 10

4.3.2.11. int getPWMDuty(); ___ 10

4.3.2.12. bool isPWMRunning(); __ 11

4.3.2.13. int getPinNumber();___ 11

5. Usage of the new-gpiotest Program _______________________________________ 11

6. Further Development ___ 12

6.1. Work In Progress __ 12

6.2. For the Future ___ 12

1. Background
new-gpio is alternative C++ code for accessing the Omega GPIO pins.

The rationale for producing this code was two-fold:

• A desire for GPIO access with different features and capability than fast-gpio

• An exercise in developing C++ code for the Omega

new-gpio consists of two main components:

• libnew-gpio.so – a dynamic library containing the classes used to intercat with GPIO pins

• new-gpiotest – a simple test program for interacting with GPIO pins using libnew-gpio.so

These components are described in more details in this document, as are the files contained in the

package supplied with this document.

The software was developed under NetBeans 8.1 running on a KUbuntu-14.04 system running in a

VirtualBox VM.

Details of setting up the tool-chain for building and the usage of NetBeans can be found at:

• How to install gcc (https://community.onion.io/topic/9/how-to-install-gcc)

• Using NetBeans to compile C/C++ code for Omega

(https://community.onion.io/topic/125/using-netbeans-to-compile-c-c-code-for-omega)

new-gpio comes with no guarantees ☺ but you are free to use it and do what you want with it.

NOTE: Some of the code in the class GPIOAccess as described below was derived from code in fast-

gpio

2. Files Supplied
new-gpio is supplied in an archive file named new-gpio.tar.bz2. This archive contains the following:

• new-gpio.pdf – this documentation as a PDF file

• libnew-gpio.so – the built dynamic library

• new-gpiotest – the built test program

• new-gpio-src – a directory containing the source files for the libnew-gpio.so library

• new-gpiotest-src – a directory containing the source file for the new-gpiotest program

3. Basic Installation
Installing the software is simple. It primarily consists of copying the library and test program to

suitable locations on your Omega.

3.1. Installing libnew-gpio.so
Copy the libnew-gpio.so file to the /lib directory on your Omega.

Alternatively, you can copy the library to any location that may be set up in any LD_LIBRARY_PATH

directory on your Omega. For example, I use the following for testing:

• Created directory /root/lib

• Copied the library to /root/lib

• Added the following lines to my /etc/profile file:

LD_LIBRARY_PATH=/root/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

3.2. Installing the new-gpiotest Program
Copy the new-gpiotest program file to any suitable directory on your Omega from which you wish to

run it.

4. Description of the libnew-gpio.so Library
The libnew-gpio.so library contains three main components. These components and their source

files are:

• GPIOTypes – defines a few basic types used elsewhere

File:

GPIOTypes.h

• GPIOAccess – a class used for direct access to the Omega GPIO hardware.

Contains only static methods for access.

Files:

GPIOAccess.h

GPIOAccess.cpp

• GPIOPwmPin – a support class used only internal by GPIOAccess to provide PWM facilities

for a pin

Files:

GPIOPwmPin.h

GPIOPwmPin.cpp

• GPIOPin – a class used to represent instances of a GPIO pin.

Contains methods to interact with the specific pin.

Files:

GPIOPin.h

GPIOPin.cpp

4.1. GPIOTypes
The file GPIOTypes.h contains definitions of some basic types used elsewhere.

4.1.1. enum GPIO_Result

enum GPIO_Result is used to represent the returned result of GPIO operations. It has values:

• GPIO_OK = 0 – represents a successful result

• GPIO_BAD_ACCESS = 1 – indicates a failure to access the GPIO hardware registers

• GPIO_INVALID_PIN = 2 – indicates that a pin number has been used that is not accessible by

GPIO

• GPIO_INVALID_OP = 3 – indicates that an invalid operation has been attempted on a pin.

E.G. attempting to set a pin that is in input mode, or reading a pin that is in output mode

4.1.2. enum GPIO_Direction

enum GPIO_Direction is used to represent the direction for a GPIO pin. It has values:

• GPIO_INPUT = false – represents an input pin

• GPIO_OUTPUT = true – represents an output pin

4.2. Class GPIOAccess
The GPIOAccess class is the main method by which all access is made to the GPIO hardware.

The class contains only static methods and no instance of this class will ever actually be created

hence there are no constructors or destructors.

4.2.1. GPIOAccess Public Methods

4.2.1.1. static GPIO_Result setDirection(int pinNum, GPIO_Direction dir);

Sets the direction for a pin.

Parameters:

• int pinNum – the number of the pin

• GPIO_Direction dir – the direction to set the pin to

Returns:

• An indication of the success or failure of the method

4.2.1.2. static GPIO_Result getDirection(int pinNum, GPIO_Direction &dir);

Queries the direction of a pin.

Parameters:

• int pinNum – the number of the pin

• GPIO_Direction &dir – returns the current direction of the pin

Returns:

• An indication of the success or failure of the method

4.2.1.3. static GPIO_Result set(int pinNum, int value);

Sets the output state of a pin. Only valid for output pins.

Parameters:

• int pinNum – the number of the pin

• int value – the value to set the pin to

Returns:

• An indication of the success or failure of the method

4.2.1.4. static GPIO_Result get(int pinNum, int &value);

Queries the input state of a pin. Only valid for input pins.

Parameters:

• int pinNum – the number of the pin

• int &value – returns the current state of the pin

Returns:

• An indication of the success or failure of the method

4.2.1.5. static GPIO_Result setPWM(int pinNum, int freq, int duty);

Starts the PWM output on a pin with the given frequency and duty values.

NOTE: PWM output on a pin is run on a separate thread for that pin. When this method is called the

thread will be started (or its data updated if it is already running) and the call to the method then

returns. The thread continues to run until one of the following occurs:

• the stopPWM method is called for the pin

• the process that started the thread (i.e. made the call to this method) terminates

Parameters:

• int pinNum – the number of the pin

• int freq – sets the PWM frequency in Hz

• int duty – sets the PWM duty cycle percentage

Returns:

• An indication of the success or failure of the method

4.2.1.6. static GPIO_Result startPWM(int pinNum);

Starts the PWM output on a pin using the last used frequency and duty values for the pin.

Parameters:

• int pinNum – the number of the pin

Returns:

• An indication of the success or failure of the method

4.2.1.7. static GPIO_Result stopPWM(int pinNum);

Stops any current PWM output on a pin.

Parameters:

• int pinNum – the number of the pin

Returns:

• An indication of the success or failure of the method

4.2.1.8. static int getPWMFreq(int pinNum);

Returns the currently set PWM frequency for a pin.

Parameters:

• int pinNum – the number of the pin

Returns:

• The PWM frequency in Hz

4.2.1.9. static int getPWMDuty(int pinNum);

Returns the currently set PWM duty cycle percentage for a pin

Parameters:

• int pinNum – the number of the pin

Returns:

• The PWM duty cycle percentage

4.2.1.10. static bool isPWMRunning(int pinNum);

Returns an indication of whether or not PWM is currently running on a pin

Parameters:

• int pinNum – the number of the pin

Returns:

• true if PWM is running; false if PWM is not running

4.2.1.11. static bool isPinUsable(int pinNum);

Returns an indication as to whether or not a specific pin number can be used for a GPIO pin.

Parameters:

• int pinNum – the number of the pin

Returns:

• true or false – indicating whether or not pinNum is a valid GPIO pin

4.2.1.12. static bool isAccessOk();

Returns an indication as to whether or not the GPIO hardware is accessible.

Parameters:

• <none>

Returns:

• true or false – indicating whether or not the hardware is accessible

4.3. Class GPIOPin
The GPIOPin class represents instances of a GPIO pin.

4.3.1. GPIOPin Constructor and Destructor

4.3.1.1. Constructor - GPIOPin(int pinNum);

Creates a new GPIOPin instance for a given pin.

Parameters:

• Int pinNum – the pin number

4.3.1.2. Destructor - ~GPIOPin(void);

Destroys an instance of a GPIOPin.

NOTE: This also ensures that any PWM thread for the pin is terminated.

Parameters:

• <none>

4.3.2. GPIOPin Public Methods

4.3.2.1. GPIO_Result setDirection(GPIO_Direction dir);

Sets the direction of the GPIOPin.

Parameters:

• GPIO_Direction dir – the direction to set the pin to

Returns:

• An indication of the success or failure of the method

4.3.2.2. GPIO_Result getDirection(GPIO_Direction &dir);

Obtains the current direction of the GPIOPin

Parameters:

• GPIO_Direction &dir – is set to the current direction of the pin

Returns:

• An indication of the success or failure of the method

4.3.2.3. GPIO_Direction getDirection();

Directly returns the direction of the GPIOPin.

Parameters:

• <none>

Returns:

• the current direction of the pin

4.3.2.4. GPIO_Result set(int value);

Sets the value of the GPIOPin.

Parameters:

• Int value – the value to set the pin to

Returns:

• An indication of the success or failure of the method

4.3.2.5. GPIO_Result get(int &value);

Obtains the current value of the GPIOPin

Parameters:

• int &value – is set to the current value of the pin

Returns:

• An indication of the success or failure of the method

4.3.2.6. int get();

Directly returns the value of the GPIOPin.

Parameters:

• <none>

Returns:

• the current value of the pin

4.3.2.7. GPIO_Result setPWM(int freq, int duty);

Starts the PWM output on the GPIOPin with the given frequency and duty values.

NOTE: PWM output on a pin is run on a separate thread for that pin. When this method is called the

thread will be started (or its data updated if it is already running) and the call to the method then

returns. The thread continues to run until one of the following occurs:

• the stopPWM method is called for the pin

• the GPIOPin destructor for the pin is called

• the process that started the thread (i.e. made the call to this method) terminates

Parameters:

• int freq – sets the PWM frequency in Hz

• int duty – sets the PWM duty cycle percentage

Returns:

• An indication of the success or failure of the method

4.3.2.8. GPIO_Result startPWM();

Starts the PWM output on the GPIOPin using the last used frequency and duty values

Parameters:

• <none>

Returns:

• An indication of the success or failure of the method

4.3.2.9. GPIO_Result stopPWM();

Stops any current PWM output on the GPIOPin

Parameters:

• <none>

Returns:

• An indication of the success or failure of the method

4.3.2.10. int getPWMFreq();

Returns the currently set PWM frequency for the GPIOPin

Parameters:

• <none>

Returns:

• The PWM frequency in Hz

4.3.2.11. int getPWMDuty();

Returns the currently set PWM duty cycle percentage for the GPIOPin

Parameters:

• <none>

Returns:

• The PWM duty cycle percentage

4.3.2.12. bool isPWMRunning();

Returns an indication of whether or not PWM is currently running on the GPIOPin

Parameters:

• <none>

Returns:

• true if PWM is running; false if PWM is not running

4.3.2.13. int getPinNumber();

Returns the pin number for the GPIOPin

Parameters:

• <none>

Returns:

• The pin number

5. Usage of the new-gpiotest Program
The new-gpiotest program accepts a set of parameters to control its operation.

The program will document it’s usage when the command new-gpiotest help is used.

In addition, the usage is shown whenever any errors are detected in the parameters.

The usage information displayed is:

./new-gpiotest
Usage
 ./new-gpiotest <op> <pin> <val>
 or:
 ./new-gpiotest pwm <pin> <freq> <duty>
 or:
 ./new-gpiotest pwmstop <pin>
Where:
 <op> is one of:
 list - to list info
 set - to set pin value
 get - to get and return pin value
 setd - to set pin direction
 getd - to get and return pin direction
 help - to display usage
 <pin> is one of
 0, 1, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 23, 26, all
 A <pin> of all can only be used for an <op> of list, set or
setd
 <val> is only required for set and setd:
 for set, <val> is 0 or 1
 for setd, <val> is in or out
 <freq> is PWM frequency in Hz > 0
 <duty> is PWM duty cycle % in range 0 to 100

Notes:

1. The return value from the command will be one of the following:

• 255 – indicates an error has occurred – either in the parameters or in executing the

command

• 0 – indicates normal successfully completion for an operation (<op>) other than get

or getd

• For a successful get operation:

o 0 – indicates the pin is off

o 1 – indicates the pin is on

• For a successful getd operation:

o 0 – indicates the pin is an input pin

o 1 – indicates the pin is an output pin

2. When the pwm operation is used, the program forks a separate process to perform the

PWM output.

This separate process continues after the program returns until such time as the pwmstop

operation is performed on the same pin.

The ID of the separate process can be discovered by viewing the contents of the file

/tmp/pin<n>_pwm_pid where <n> is the relevant pin number.

6. Further Development
Development of new-gpio is on-going. There will be changes and additions to the code in the future.

6.1. Work In Progress
In particular, work is in progress with new-gpio for the following:

• Development of a method of attaching interrupt service code to input pins that will be called

when the input state of a pin changes

6.2. For the Future
In addition, it is intended that further work be done in the future based on new-gpio. In particular:

• Similar code for i2c access

• Java class wrappers that will provide access to GPIO and i2c from Java on the Omega

