
 new-gpio 

Version 1.3 – 31 January 2016 

Kit Bishop 

Document History 
Version Date Change Details 

Version 1.0 26 November 2015 Initial version 

Version 1.1 5 December 2015 Added PWM control methods in GPIOAccess and GPIOPin 

classes in libnew-gpio.so library 

Added PWM control in new-gpiotest program 

Some reorganisation of contents of this document 

Version 1.2 18 January 2016 Added IRQ functionality to GPIOAccess and GPIOPin 

classes in libnew-gpio.so library 

Added control of IQ in new-gpiotest program 

Changes in method of obtaining result of method calls 

Additional minor changes to parameters to new_gpiotest 

program 

Add section on pre-requisites for IRQ usage 

Version 1.3 31 January 2016 Some re-organisation of packaged components and 

component renaming 

The new-gpiotest program is now just named new-gpio 

Provided Makefile files for all components 

Added both static and dynamic link versions of all 

components 

Added new class, RGBLED, for control of RGB leds (e.g. as 

in expansion led) 

Changed syntax of parameters to new-gpio program to be 

the same (where relevant) as is used for the existing fast-

gpio program 

Added additional  operations to new-gpio program for 

control of expansion led 

Added new program, new-expled, that does the same as 

the existing expled script but written in C++ using libnew-

gpio 

   

Contents 

1. Background ______________________________________________________________ 4 

2. Pre-requisites ____________________________________________________________ 4 

3. Files Supplied _____________________________________________________________ 5 

4. Usage and Installation _____________________________________________________ 5 

4.1. Using libnew-gpio.a static library _______________________________________________ 5 

4.2. Using and Installing libnew-gpio.so ______________________________________________ 5 



4.3. Installing the new-gpio and new-expled Programs _________________________________ 6 

5. Using Makefiles ___________________________________________________________ 6 

5.1. Modify Makefile _____________________________________________________________ 6 

5.2. Makefile targets _____________________________________________________________ 6 

6. Description of the libnew-gpio Library _________________________________________ 7 

6.1. GPIOTypes _________________________________________________________________ 8 

6.1.1. enum GPIO_Result ________________________________________________________________ 8 

6.1.2. enum GPIO_Direction _____________________________________________________________ 8 

6.1.3. enum GPIO_Irq_Type ______________________________________________________________ 8 

6.1.4. typedef void (*GPIO_Irq_Handler_Func) (int pinNum, GPIO_Irq_Type type); _________________ 9 

6.1.5. GPIO_Irq_Handler_Object __________________________________________________________ 9 

6.2. Class GPIOAccess ____________________________________________________________ 9 

6.2.1. GPIOAccess Public Methods _______________________________________________________ 10 

6.2.1.1. static void setDirection(int pinNum, GPIO_Direction dir); ______________________________ 10 

6.2.1.2. static GPIO_Direction getDirection(int pinNum); _____________________________________ 10 

6.2.1.3. static void set(int pinNum, int value); ______________________________________________ 10 

6.2.1.4. static int get(int pinNum); _______________________________________________________ 10 

6.2.1.5. static void setPWM(int pinNum, int freq, int duty); ___________________________________ 11 

6.2.1.6. static void startPWM(int pinNum); ________________________________________________ 11 

6.2.1.7. static void stopPWM(int pinNum); ________________________________________________ 11 

6.2.1.8. static int getPWMFreq(int pinNum); _______________________________________________ 11 

6.2.1.9. static int getPWMDuty(int pinNum); ______________________________________________ 12 

6.2.1.10. static void setIrq(int pinNum, GPIO_Irq_Type type, GPIO_Irq_Handler_Func handler, long int 

debounceMs = 0); ______________________________________________________________________ 12 

6.2.1.11. static void setIrq(int pinNum, GPIO_Irq_Type type, GPIO_Irq_Handler_Object * handlerObj, 

long int debounceMs = 0); ________________________________________________________________ 13 

6.2.1.12. static void resetIrq(int pinNum); ________________________________________________ 13 

6.2.1.13. static void enableIrq(int pinNum); ______________________________________________ 13 

6.2.1.14. static void disableIrq(int pinNum); ______________________________________________ 14 

6.2.1.15. static void enableIrq(int pinNum, bool enable); ___________________________________ 14 

6.2.1.16. static bool irqEnabled(int pinNum); _____________________________________________ 14 

6.2.1.17. static GPIO_Irq_Type getIrqType(int pinNum); ____________________________________ 14 

6.2.1.18. static GPIO_Irq_Handler_Func getIrqHandler(int pinNum); __________________________ 15 

6.2.1.19. static GPIO_Irq_Handler_Object * getIrqHandlerObj(int pinNum); ____________________ 15 

6.2.1.20. static void enableIrq(); _______________________________________________________ 15 

6.2.1.21. static void disableIrq(); _______________________________________________________ 15 

6.2.1.22. static void enableIrq(bool enable); ______________________________________________ 15 

6.2.1.23. static bool irqEnabled(); ______________________________________________________ 16 

6.2.1.24. static bool isPWMRunning(int pinNum); _________________________________________ 16 

6.2.1.25. static bool isPinUsable(int pinNum); ____________________________________________ 16 

6.2.1.26. static bool isAccessOk(); ______________________________________________________ 16 

6.2.1.27. static GPIO_Result getLastResult(); _____________________________________________ 16 

6.3. Class GPIOPin ______________________________________________________________ 17 

6.3.1. GPIOPin Constructor and Destructor _________________________________________________ 17 

6.3.1.1. Constructor - GPIOPin(int pinNum); _______________________________________________ 17 



6.3.1.2. Destructor - ~GPIOPin(void); _____________________________________________________ 17 

6.3.2. GPIOPin Public Methods __________________________________________________________ 17 

6.3.2.1. <void> setDirection(GPIO_Direction dir); ___________________________________________ 17 

6.3.2.2. GPIO_Result getDirection(); _____________________________________________________ 17 

6.3.2.3. void set(int value); _____________________________________________________________ 18 

6.3.2.4. int get(); _____________________________________________________________________ 18 

6.3.2.5. void setPWM(int freq, int duty); __________________________________________________ 18 

6.3.2.6. void startPWM(); ______________________________________________________________ 18 

6.3.2.7. void stopPWM(); ______________________________________________________________ 19 

6.3.2.8. int getPWMFreq(); _____________________________________________________________ 19 

6.3.2.9. int getPWMDuty(); _____________________________________________________________ 19 

6.3.2.10. bool isPWMRunning(); _______________________________________________________ 19 

6.3.2.11. void setIrq(GPIO_Irq_Type type, GPIO_Irq_Handler_Func handler, long int debounceMs = 0);

 20 

6.3.2.12. void setIrq(GPIO_Irq_Type type, GPIO_Irq_Handler_Object * handlerObj, long int 

debounceMs = 0); ______________________________________________________________________ 20 

6.3.2.13. void resetIrq(); ______________________________________________________________ 21 

6.3.2.14. void enableIrq(); ____________________________________________________________ 21 

6.3.2.15. void disableIrq(); ____________________________________________________________ 21 

6.3.2.16. void enableIrq(bool enable); ___________________________________________________ 21 

6.3.2.17. bool irqEnabled(); ___________________________________________________________ 22 

6.3.2.18. GPIO_Irq_Type getIrqType(); __________________________________________________ 22 

6.3.2.19. GPIO_Irq_Handler_Func getIrqHandler(); ________________________________________ 22 

6.3.2.20. GPIO_Irq_Handler_Object * getIrqHandlerObj(); __________________________________ 22 

6.3.2.21. int getPinNumber();__________________________________________________________ 22 

6.3.2.22. GPIO_Result getLastResult(); __________________________________________________ 23 

6.4. Class RGBLED ______________________________________________________________ 23 

6.4.1. RGBLED Constructors and Destructor ________________________________________________ 23 

6.4.1.1. Constructor - RGBLED();_________________________________________________________ 23 

6.4.1.2. Constructor - RGBLED(int redPin, int greenPin, int bluePin); ____________________________ 23 

6.4.1.3. Destructor - ~RGBLED(void); _____________________________________________________ 23 

6.4.2. RGBLED Public Methods ___________________________________________________________ 24 

6.4.2.1. <void> setColor(int redVal, int greenVal, int blueVal); _________________________________ 24 

6.4.2.2. <void> setRed(int redVal); _______________________________________________________ 24 

6.4.2.3. <void> setGreen(int greenVal); ___________________________________________________ 24 

6.4.2.4. <void> setBlue(int blueVal); _____________________________________________________ 24 

6.4.2.5. int getRed(); __________________________________________________________________ 25 

6.4.2.6. int getGreen(); ________________________________________________________________ 25 

6.4.2.7. int getBlue(); _________________________________________________________________ 25 

6.4.2.8. GPIOPin * getRedPin(); _________________________________________________________ 25 

6.4.2.9. GPIOPin * getGreenPin(); _______________________________________________________ 25 

6.4.2.10. GPIOPin * getBluePin(); _______________________________________________________ 26 

6.4.2.11. void setActiveLow(bool actLow); _______________________________________________ 26 

6.4.2.12. bool isActiveLow(); __________________________________________________________ 26 

7. Usage of the new-gpio Program ____________________________________________ 26 

8. Usage of the new-expled Program ___________________________________________ 28 

9. Further Development _____________________________________________________ 29 



9.1. For the Future ______________________________________________________________ 29 

1. Background 
new-gpio is alternative C++ code for accessing the Omega GPIO pins. 

The rationale for producing this code was two-fold: 

• A desire for GPIO access with different features and capability than fast-gpio 

• An exercise in developing C++ code for the Omega 

new-gpio consists of three main components: 

• libnew-gpio – a library containing the classes used to interact with GPIO pins 

• new-gpio – a program for interacting with GPIO pins using libnew-gpio – this can be considered 

equivalent to the Omega supplied fast-gpio program but with extensions 

• new-expled – a simple test program for controlling the expansion dock led using libnew-gpio – 

this can be considered equivalent to the Omega supplied expled script but with extensions 

In all cases, each component is supplied using dynamic link and static linking and all sources, make files 

and build products are supplied. 

These components are described in more details in this document, as are the files contained in the 

package supplied with this document. 

The software was developed on a KUbuntu-14.04 system running in a VirtualBox VM and uses the 

OpenWrt toolchain for building the code: 

The toolchain used can be found at: 

• https://s3-us-west-2.amazonaws.com/onion-cdn/community/openwrt/OpenWrt-Toolchain-

ar71xx-generic_gcc-4.8-linaro_uClibc-0.9.33.2.Linux-x86_64.tar.bz2 

and details of its setup and usage can be found at: 

• https://community.onion.io/topic/9/how-to-install-gcc/22 

new-gpio comes with NO GUARANTEES ☺ but you are free to use it and do what you want with it. 

NOTE: Some of the code in the class GPIOAccess as described below was derived from code in fast-gpio 

2. Pre-requisites 
To use theGPIO interrupt handling facilities in new-gpio, your Omega must fulfil the following pre-

requisites: 

• Must have been upgraded to version 0.0.6-b265 or later 

• Must have the kmod-gpio-irq package installed by running: 



opkg update 

opkg install kmod-gpio-irq 

3. Files Supplied  
new-gpio is supplied in an archive file named new-gpio-1.3.tar.bz2.  This archive contains the following 

directories and files : 

• new-gpio.pdf – this documentation as a PDF file 

• source – directory containing all source files and make files: 

o libnew-gpio  – directory containing all sources and Makefile for libnew-gpio library 

o new-gpio – directory containing all sources and Makefile for new-gpio program 

o new-expled – directory containing all sources and Makefile for new-expled program 

• bin – directory containing pre-built binary files: 

o libnew-gpio – directory containing the compiled libnew-gpio library files: 

� libnew-gpio.a – the static link library for libnew-gpio 

� libnew-gpio.so – the dynamic link library for libnew-gpio 

o new-gpio – directory containing the built new-gpio program files 

� static-linked – directory containing the new-gpio program file statically linked 

to libnew-gpio.a 

� dynamic-linked – directory containing the new-gpio program file dynamically 

linked to libnew-gpio.so 

o new-expled – directory containing the built new-expled program files 

� static-linked – directory containing the new-expled program file statically 

linked to libnew-expled.a 

� dynamic-linked – directory containing the new-expled program file dynamically 

linked to libnew-expled.so 

4. Usage and Installation 
Installing the software is simple.  It primarily consists of copying the library and test program to suitable 

locations on your Omega. 

4.1. Using libnew-gpio.a static library 
To use libnew-gpio.a static library you simply need to statically link your program to that library file. 

4.2. Using and Installing libnew-gpio.so 
To use libnew-gpio.so dynamic library you need to dynamically link your program to that library file. 

For any program that uses libnew-gpio.so the library file needs to be copied to the /lib directory on 

your Omega. 

Alternatively, you can copy the library to any location that may be set up in any LD_LIBRARY_PATH 

directory on your Omega.  For example, I use the following for testing: 



• Created directory /root/lib 

• Copied the library to /root/lib 

• Added the following lines to my /etc/profile file: 

LD_LIBRARY_PATH=/root/lib:$LD_LIBRARY_PATH 
export LD_LIBRARY_PATH 

4.3. Installing the new-gpio and new-expled Programs 
If you want to use the statically linked version of these programs, simply copy the relevant program file 

from the static-linked directory as above to any suitable directory on your Omega from which you wish 

to run it. 

If you want to use the dynamically linked version of these programs, simply copy the relevant program 

file from the dynamic-linked directory as above to any suitable directory on your Omega from which 

you wish to run it.  You will also need to install the libnew-gpio.so library file as described above. 

5. Using Makefiles 
Each component in the source directory contains a Makefile that can be used to build the relevant 

component. 

5.1. Modify Makefile 
Each Makefile will need modifying in one or two ways: 

• You NEED to and MUST change TOOL_BIN_DIR to the "bin" directory of your OpenWrt uClibc 

toolchain. E.G. make appropriate change to <xxxx> in: 

 

TOOL_BIN_DIR=<xxxx>/OpenWrt-Toolchain-ar71xx-generic_gcc-4.8-linaro_uClibc-

0.9.33.2.Linux-x86_64/toolchain-mips_34kc_gcc-4.8-linaro_uClibc-0.9.33.2/bin 

• You MAY need to change LIBNEW-GPIO_DIR to relative directory of libnew-gpio if you are not 

using the sources as originally supplied. 

This is relevant only to the new-gpio and new-expled programs. 

The default if using the standard source directory structure as supplied is: 

 

LIBNEW-GPIO_DIR=../libnew-gpio 

5.2. Makefile targets 
Each Makefile implements the same set of targets: 

• make 

The default target. Performs a complete build of both static and dynamic link versions of 

component. 

This is directly equivalent to: 

make static dynamic 

• make static 



Performs a complete build of just the static link version of component. 

 

• make dynamic 

Performs a complete build of just the dynamic link version of component. 

 

• make clean 

Removes all previous build files, both static and dynamic link versions. 

This is directly equivalent to: 

make clean-static clean-dynamic 

 

• make clean-static 

Removes all previous build files for static link versions only 

. 

• make clean-dynamic 

Removes all previous build files for dynamic link versions only 

. 

6. Description of the libnew-gpio Library 
The libnew-gpio library contains four main components for access and usage of new-gpio and two 

components that have internal usage only.  These main components and their source files are: 

• GPIOTypes – defines a few basic types used elsewhere 

File:  

GPIOTypes.h 

• GPIOAccess – a class used for direct access to the Omega GPIO hardware. 

Contains only static methods for access. 

Files: 

GPIOAccess.h 

GPIOAccess.cpp 

• GPIOPin – a class used to represent instances of a GPIO pin. 

Contains methods to interact with the specific pin. 

Files: 

GPIOPin.h 

GPIOPin.cpp 

• RGBLED – a class used to represent instances of an RGB led (such as the led on the expansion 

dock). 

Contains methods to interact with the RGB led. 

Files: 

RGBLED.h 

RGBLED.cpp 

 

The internal use only components and their source files are: 



• GPIOPwmPin – a support class used only internal by GPIOAccess to provide PWM facilities for a 

pin 

Files: 

GPIOPwmPin.h 

GPIOPwmPin.cpp 

• GPIOIrqInf – defines internal type for support of GPIO interrups 

File: 

GPIOIrqInf.h 

 

The contents of the main components are described in following sections. 

6.1. GPIOTypes 
The file GPIOTypes.h contains definitions of some basic types used elsewhere. 

6.1.1. enum GPIO_Result 

enum GPIO_Result is used to represent the returned result of GPIO operations.  It has values: 

• GPIO_OK = 0 – represents a successful result 

• GPIO_BAD_ACCESS = 1 – indicates a failure to access the GPIO hardware registers 

• GPIO_INVALID_PIN = 2 – indicates that a pin number has been used that is not accessible by 

GPIO 

• GPIO_INVALID_OP = 3 – indicates that an invalid operation has been attempted on a pin.  E.G. 

attempting to set a pin that is in input mode, or reading a pin that is in output mode 

6.1.2. enum GPIO_Direction 

enum GPIO_Direction is used to represent the direction for a GPIO pin.  It has values: 

• GPIO_INPUT = false – represents an input pin 

• GPIO_OUTPUT = true – represents an output pin 

6.1.3. enum GPIO_Irq_Type 

enum GPIO_Irq_Type is used to represent the type of interrupt used for a GPIO pin.  It has values: 

• GPIO__IRQ_NONE = 0 – indicates no interrupt 

• GPIO_IRQ_RISING = 1 – indicates an interrupt on the rising edge (i.e. low to high change) on a 

pin 

• GPIO_IRQ_FALLING = 2 – indicates an interrupt on the falling edge (i.e. high to low change) on a 

pin 

• GPIO_IRQ_BOTH = 3 – indicates an interrupt on the either of a rising edge or on a falling edge  

on a pin 



6.1.4. typedef void (*GPIO_Irq_Handler_Func) (int pinNum, GPIO_Irq_Type 

type); 

GPIO_Irq_Handler_Func represents the type of the function to be specified for handling of an interrupt.  

Any such function passed for handling of an interrupt will be called when the interrupt occurs. 

While the parameters passed are not strictly speaking required for interrupt handling in general, they 

are provided to allow the same handler to be used for multiple pins and interrupt types.  Any actual 

handler can then (if required) control its action depending upon the pin and interrupt type.  Ifno such 

distinction is required, these parameters can be ignored in the actual implementation of a passed 

handler. 

Parameters: 

• int pinNum – the number of the pin for which the handler is being called 

• GPIO_Irq_Type type – the type of interrupt for which the handler is being  called 

Returns: 

• <none> 

6.1.5. GPIO_Irq_Handler_Object 

GPIO_Irq_Handler_Object is an pure virtual abstract class that can be used as the base class of an 

object used to handle an interrupt as an alternative to using a GPIO_Irq_Handler_Func. 

The form of the class is: 

class GPIO_Irq_Handler_Object { 
public: 
    virtual void handleIrq(int pinNum, GPIO_Irq_Type type) = 0; 
}; 

 

Any object actually used as an instance of GPIO_Irq_Handler_Object must inherit from this class and 

provide a non-abstract method for handleIrq. When an instance of any such class is used to handle an 

interrupt, the handleIrq method of the object is called to handle the interrupt. The handleIrq method 

has the following characteristics: 

Parameters: 

• int pinNum – the number of the pin for which the handler is being called 

• GPIO_Irq_Type type – the type of interrupt for which the handler is being  called 

Returns: 

• <none> 

6.2. Class GPIOAccess 
The GPIOAccess class is the main method by which all access is made to the GPIO hardware. 



The class contains only static methods and no instance of this class will ever actually be created hence 

there are no constructors or destructors. 

6.2.1. GPIOAccess Public Methods 

Note that in general, the success or failure of any method can be ascertained by calling the 

getlastResult immediately after the call to the particular method.  

6.2.1.1. static void setDirection(int pinNum, GPIO_Direction dir); 

Sets the direction for a pin. 

Parameters: 

• int pinNum – the number of the pin 

• GPIO_Direction dir – the direction to set the pin to 

Returns: 

• <none> 

6.2.1.2. static GPIO_Direction getDirection(int pinNum); 

Queries the direction of a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• The current direction of the pin 

6.2.1.3. static void set(int pinNum, int value); 

Sets the output state of a pin. Only valid for output pins. 

Parameters: 

• int pinNum – the number of the pin 

• int value – the value to set the pin to 

Returns: 

• <none> 

6.2.1.4. static int get(int pinNum); 

Queries the input state of a pin.  Only valid for input pins. 

Parameters: 

• int pinNum – the number of the pin 



Returns: 

• The current state of the pin 

6.2.1.5. static void setPWM(int pinNum, int freq, int duty); 

Starts the PWM output on a pin with the given frequency and duty values. 

NOTE: PWM output on a pin is run on a separate thread for that pin.  When this method is called the 

thread will be started (or its data updated if it is already running) and the call to the method then 

returns.  The thread continues to run until one of the following occurs: 

• the stopPWM method is called for the pin 

• the process that started the thread (i.e. made the call to this method) terminates 

Parameters: 

• int pinNum – the number of the pin 

• int freq – sets the PWM frequency in Hz 

• int duty – sets the PWM duty cycle percentage 

Returns: 

• <none> 

6.2.1.6. static void startPWM(int pinNum); 

Starts the PWM output on a pin using the last used frequency and duty values for the pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• <none> 

6.2.1.7. static void stopPWM(int pinNum); 

Stops any current PWM output on a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• <none> 

6.2.1.8. static int getPWMFreq(int pinNum); 

Returns the currently set PWM frequency for a pin. 

Parameters: 



• int pinNum – the number of the pin 

Returns: 

• The PWM frequency in Hz 

6.2.1.9. static int getPWMDuty(int pinNum); 

Returns the currently set PWM duty cycle percentage for a pin 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• The PWM duty cycle percentage 

6.2.1.10. static void setIrq(int pinNum, GPIO_Irq_Type type, 

GPIO_Irq_Handler_Func handler, long int debounceMs = 0); 

Setups up interrupt handling for a pin with a given handler function. 

NOTE: IRQ handling on a pin is run on a separate thread for that pin.  When this method is called the 

thread will be started and the call to the method then returns.  The thread continues to run and to call 

the handler function whenever the relevant interrupt occurs until one of the following occurs: 

• the resetIrq method is called for the pin 

• the process that started the thread (i.e. made the call to this method) terminates 

Parameters: 

• int pinNum – the number of the pin 

• GPIO_Irq_Type type – specifies the interrupt type to apply 

• GPIO_Irq_Handler_Func handler – a pointer to the function to be called to handle the interrupt 

• Long int debounceMs = 0 – specifies an optional debounce period in milliseconds to be applied. 

Default value is 0 

If value is 0 no debounce handling is applied 

Debounce handling is used to deal with interrupts that come from a potentially noisy 

mechanical source such as buttons or switches. 

When a non-zero value is used for debounceMs, any input signal changes that would normally 

cause an interrupt but which occur within a time less than the debounceMs  time since the 

previous signal change will be ignored so as not to trigger handling of a false signal. 

Returns: 

• <none> 



6.2.1.11. static void setIrq(int pinNum, GPIO_Irq_Type type, 

GPIO_Irq_Handler_Object * handlerObj, long int debounceMs = 0); 

Setups up interrupt handling for a pin with a given handler object. 

NOTE: IRQ handling on a pin is run on a separate thread for that pin.  When this method is called the 

thread will be started and the call to the method then returns.  The thread continues to run and to call 

the handler method of the object whenever the relevant interrupt occurs until one of the following 

occurs: 

• the resetIrq method is called for the pin 

• the process that started the thread (i.e. made the call to this method) terminates 

Parameters: 

• int pinNum – the number of the pin 

• GPIO_Irq_Type type – specifies the interrupt type to apply 

• GPIO_Irq_Handler_Object handlerObj – a pointer to the handler object to be used to handle 

the interrupt 

• long int debounceMs = 0 – specifies an optional debounce period in milliseconds to be applied. 

Default value is 0 

If value is 0 no debounce handling is applied 

Debounce handling is used to deal with interrupts that come from a potentially noisy 

mechanical source such as buttons or switches. 

When a non-zero value is used for debounceMs, any input signal changes that would normally 

cause an interrupt but which occur within a time less than the debounceMs  time since the 

previous signal change will be ignored so as not to trigger handling of a false signal. 

Returns: 

• <none> 

6.2.1.12. static void resetIrq(int pinNum); 

Removes any interrupt handling for a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• <none> 

6.2.1.13. static void enableIrq(int pinNum); 

Enables interrupt handling for a pin that has previously been disabled by disableIrq. 

Parameters: 

• int pinNum – the number of the pin 



Returns: 

• <none> 

6.2.1.14. static void disableIrq(int pinNum); 

Disables interrupt handling for a pin that has previously been enabled by enableIrq. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• <none> 

6.2.1.15. static void enableIrq(int pinNum, bool enable); 

Enables or Disables interrupt handling for a pin according to parameter. 

Parameters: 

• int pinNum – the number of the pin 

• bool enable – indicates whether interrupt handling is to be enabled (true)  or disabled (false) 

Returns: 

• <none> 

6.2.1.16. static bool irqEnabled(int pinNum); 

Returns an indication as to whether interrupt handling is currently enabled or disabled for a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• true – interrupt handling is enabled, false – interrupt handling is disabled 

6.2.1.17. static GPIO_Irq_Type getIrqType(int pinNum); 

Returns the current interrupt type for a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• the interrupt type 



6.2.1.18. static GPIO_Irq_Handler_Func getIrqHandler(int pinNum); 

Returns the any currently established interrupt handler function for a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• the interrupt handler function 

6.2.1.19. static GPIO_Irq_Handler_Object * getIrqHandlerObj(int pinNum); 

Returns the any currently established interrupt handler object for a pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• pointer to the interrupt handler object 

6.2.1.20. static void enableIrq(); 

Enables interrupt handling for all pins with interrupt handling set up. 

Parameters: 

• <none> 

Returns: 

• <none> 

6.2.1.21. static void disableIrq(); 

Disables interrupt handling for all pins with interrupt handling set up. 

Parameters: 

• <none> 

Returns: 

• <none> 

6.2.1.22. static void enableIrq(bool enable); 

Enables or disables interrupt handling for all pins with interrupt handling set up according to parameter. 

Parameters: 

• bool enable – indicates whether interrupt handling is to be enabled (true)  or disabled (false) 



Returns: 

• <none> 

6.2.1.23. static bool irqEnabled(); 

Returns an indication as to whether interrupt handling is currently enabled or disabled for all pins. 

Parameters: 

• <none> 

Returns: 

• true – interrupt handling is enabled, false – interrupt handling is disabled 

6.2.1.24. static bool isPWMRunning(int pinNum); 

Returns an indication of whether or not PWM is currently running on a pin 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• true if PWM is running; false if PWM is not running 

6.2.1.25. static bool isPinUsable(int pinNum); 

Returns an indication as to whether or not a specific pin number can be used for a GPIO pin. 

Parameters: 

• int pinNum – the number of the pin 

Returns: 

• true or false – indicating whether or not pinNum is a valid GPIO pin 

6.2.1.26. static bool isAccessOk(); 

Returns an indication as to whether or not the GPIO hardware is accessible. 

Parameters: 

• <none> 

Returns: 

• true or false – indicating whether or not the hardware is accessible 

6.2.1.27. static GPIO_Result getLastResult(); 

Returns the result of the latest call to other methods. 



Parameters: 

• <none> 

Returns: 

• The result of the last method call 

6.3. Class GPIOPin 
The GPIOPin class represents instances of a GPIO pin. 

6.3.1. GPIOPin Constructor and Destructor 

6.3.1.1. Constructor - GPIOPin(int pinNum); 

Creates a new GPIOPin instance for a given pin. 

Parameters: 

• int pinNum – the pin number 

6.3.1.2. Destructor - ~GPIOPin(void); 

Destroys an instance of a GPIOPin. 

NOTE: This also ensures that any PWM thread for the pin is terminated. 

Parameters: 

• <none> 

6.3.2. GPIOPin Public Methods 

Note that in general, the success or failure of any method can be ascertained by calling the 

getlastResult immediately after the call to the particular method.  

6.3.2.1. <void> setDirection(GPIO_Direction dir); 

Sets the direction of the GPIOPin. 

Parameters: 

• GPIO_Direction dir – the direction to set the pin to 

Returns: 

• <none> 

6.3.2.2. GPIO_Result getDirection(); 

Obtains the current direction of the GPIOPin 

Parameters: 



• <none> 

Returns: 

• The current direction of the pin 

6.3.2.3. void set(int value); 

Sets the value of the GPIOPin. 

Parameters: 

• int value – the value to set the pin to 

Returns: 

• <none> 

6.3.2.4. int get(); 

Directly returns the value of the GPIOPin. 

Parameters: 

• <none> 

Returns: 

• the current value of the pin 

6.3.2.5. void setPWM(int freq, int duty); 

Starts the PWM output on the GPIOPin with the given frequency and duty values. 

NOTE: PWM output on a pin is run on a separate thread for that pin.  When this method is called the 

thread will be started (or its data updated if it is already running) and the call to the method then 

returns.  The thread continues to run until one of the following occurs: 

• the stopPWM method is called for the pin 

• the GPIOPin destructor for the pin is called 

• the process that started the thread (i.e. made the call to this method) terminates 

Parameters: 

• int freq – sets the PWM frequency in Hz 

• int duty – sets the PWM duty cycle percentage 

Returns: 

• <none> 

6.3.2.6. void startPWM(); 

Starts the PWM output on the GPIOPin using the last used frequency and duty values 



Parameters: 

• <none> 

Returns: 

• <none> 

6.3.2.7. void stopPWM(); 

Stops any current PWM output on the GPIOPin 

Parameters: 

• <none> 

Returns: 

• <none> 

6.3.2.8. int getPWMFreq(); 

Returns the currently set PWM frequency for the GPIOPin 

Parameters: 

• <none> 

Returns: 

• The PWM frequency in Hz 

6.3.2.9. int getPWMDuty(); 

Returns the currently set PWM duty cycle percentage for the GPIOPin 

Parameters: 

• <none> 

Returns: 

• The PWM duty cycle percentage 

6.3.2.10. bool isPWMRunning(); 

Returns an indication of whether or not PWM is currently running on the GPIOPin 

Parameters: 

• <none> 

Returns: 

• true if PWM is running; false if PWM is not running 



6.3.2.11. void setIrq(GPIO_Irq_Type type, GPIO_Irq_Handler_Func handler, long 

int debounceMs = 0); 

Setups up interrupt handling for the GPIOPin with a given handler function. 

NOTE: IRQ handling on a pin is run on a separate thread for that pin.  When this method is called the 

thread will be started and the call to the method then returns.  The thread continues to run and to call 

the handler function whenever the relevant interrupt occurs until one of the following occurs: 

• the resetIrq method is called for the pin 

• the process that started the thread (i.e. made the call to this method) terminates 

Parameters: 

• GPIO_Irq_Type type – specifies the interrupt type to apply 

• GPIO_Irq_Handler_Func handler – a pointer to the function to be called to handle the interrupt 

• Long int debounceMs = 0 – specifies an optional debounce period in milliseconds to be applied. 

Default value is 0 

If value is 0 no debounce handling is applied 

Debounce handling is used to deal with interrupts that come from a potentially noisy 

mechanical source such as buttons or switches. 

When a non-zero value is used for debounceMs, any input signal changes that would normally 

cause an interrupt but which occur within a time less than the debounceMs  time since the 

previous signal change will be ignored so as not to trigger handling of a false signal. 

Returns: 

• <none> 

6.3.2.12. void setIrq(GPIO_Irq_Type type, GPIO_Irq_Handler_Object * 

handlerObj, long int debounceMs = 0); 

Setups up interrupt handling for the GPIOPin with a given handler object. 

NOTE: IRQ handling on a pin is run on a separate thread for that pin.  When this method is called the 

thread will be started and the call to the method then returns.  The thread continues to run and to call 

the handler method of the object whenever the relevant interrupt occurs until one of the following 

occurs: 

• the resetIrq method is called for the pin 

• the process that started the thread (i.e. made the call to this method) terminates 

Parameters: 

• GPIO_Irq_Type type – specifies the interrupt type to apply 

• GPIO_Irq_Handler_Object handlerObj – a pointer to the handler object to be used to handle 

the interrupt 

• long int debounceMs = 0 – specifies an optional debounce period in milliseconds to be applied. 

Default value is 0 



If value is 0 no debounce handling is applied 

Debounce handling is used to deal with interrupts that come from a potentially noisy 

mechanical source such as buttons or switches. 

When a non-zero value is used for debounceMs, any input signal changes that would normally 

cause an interrupt but which occur within a time less than the debounceMs  time since the 

previous signal change will be ignored so as not to trigger handling of a false signal. 

Returns: 

• <none> 

6.3.2.13. void resetIrq(); 

Removes any interrupt handling for the GPIOPin. 

Parameters: 

• <none> 

Returns: 

• <none> 

6.3.2.14. void enableIrq(); 

Enables interrupt handling for the GPIOPin that has previously been disabled by disableIrq. 

Parameters: 

• <none> 

Returns: 

• <none> 

6.3.2.15. void disableIrq(); 

Disables interrupt handling for the GPIOPin that has previously been enabled by enableIrq. 

Parameters: 

• <none> 

Returns: 

• <none> 

6.3.2.16. void enableIrq(bool enable); 

Enables or Disables interrupt handling for the GPIOPin according to parameter. 

Parameters: 

• bool enable – indicates whether interrupt handling is to be enabled (true)  or disabled (false) 



Returns: 

• <none> 

6.3.2.17. bool irqEnabled(); 

Returns an indication as to whether interrupt handling is currently enabled or disabled for the GPIOPin. 

Parameters: 

• <none> 

Returns: 

• true – interrupt handling is enabled, false – interrupt handling is disabled 

6.3.2.18. GPIO_Irq_Type getIrqType(); 

Returns the current interrupt type for the GPIOPin. 

Parameters: 

• <none> 

Returns: 

• the interrupt type 

6.3.2.19. GPIO_Irq_Handler_Func getIrqHandler(); 

Returns the any currently established interrupt handler function for the GPIOPin. 

Parameters: 

• <none> 

Returns: 

• the interrupt handler function 

6.3.2.20. GPIO_Irq_Handler_Object * getIrqHandlerObj(); 

Returns the any currently established interrupt handler object for the GPIOPin. 

Parameters: 

• <none> 

Returns: 

• pointer to the interrupt handler object 

6.3.2.21. int getPinNumber(); 

Returns the pin number for the GPIOPin 



Parameters: 

• <none> 

Returns: 

• The pin number 

6.3.2.22. GPIO_Result getLastResult(); 

Returns the result of the latest call to other methods. 

Parameters: 

• <none> 

Returns: 

• The result of the last method call 

6.4. Class RGBLED 
The RGBLED class represents instances of an RGB led that uses 3 GPIO pins to control the led.  A specific 

constructor is provided that directly represents and controls access to the Omega Expansion Dock led. 

6.4.1. RGBLED Constructors and Destructor 

6.4.1.1. Constructor - RGBLED(); 

Creates a new RGBLED instance specific for access to the expansion dock led. 

Use of this constructor is equivalent to: 

• RGBLED(17, 16, 15); 

Parameters: 

• <none> 

6.4.1.2. Constructor - RGBLED(int redPin, int greenPin, int bluePin); 

Creates a new RGBLED instance that uses the given pins. 

Parameters: 

• int redPin – the pin number for the red component of the led 

• int greenPin – the pin number for the green component of the led 

• int bluePin – the pin number for the blue component of the led 

6.4.1.3. Destructor - ~RGBLED(void); 

Destroys an instance of an RGBLED. 



Parameters: 

• <none> 

6.4.2. RGBLED Public Methods 

6.4.2.1. <void> setColor(int redVal, int greenVal, int blueVal); 

Sets the colour of the led according to the parameters. 

Parameters: 

• int redVal – the value for the red component – in the range 0 (off) to 100 (fully on). 

• int greenVal – the value for the green component – in the range 0 (off) to 100 (fully on). 

• int blueVal – the value for the blue component – in the range 0 (off) to 100 (fully on). 

Returns: 

• <none> 

6.4.2.2. <void> setRed(int redVal); 

Sets the red component of the led according to the parameter. 

Parameters: 

• int redVal – the value for the red component – in the range 0 (off) to 100 (fully on). 

Returns: 

• <none> 

6.4.2.3. <void> setGreen(int greenVal); 

Sets the green component of the led according to the parameter. 

Parameters: 

• int greenVal – the value for the green component – in the range 0 (off) to 100 (fully on). 

Returns: 

• <none> 

6.4.2.4. <void> setBlue(int blueVal); 

Sets the blue component of the led according to the parameter. 

Parameters: 

• int blueVal – the value for the blue component – in the range 0 (off) to 100 (fully on). 

Returns: 



• <none> 

6.4.2.5. int getRed(); 

Returns the setting of the red component of the led. 

Parameters: 

• <none> 

Returns: 

• The current value for the red component 

6.4.2.6. int getGreen(); 

Returns the setting of the green component of the led. 

Parameters: 

• <none> 

Returns: 

• The current value for the green component 

6.4.2.7. int getBlue(); 

Returns the setting of the blue component of the led. 

Parameters: 

• <none> 

Returns: 

• The current value for the blue component 

6.4.2.8. GPIOPin * getRedPin(); 

Returns a reference to the GPIOPin used to control the red component of the led. 

Parameters: 

• <none> 

Returns: 

• Reference to the GPIOPin for the red component 

6.4.2.9. GPIOPin * getGreenPin(); 

Returns a reference to the GPIOPin used to control the green component of the led. 

Parameters: 



• <none> 

Returns: 

• Reference to the GPIOPin for the green component 

6.4.2.10. GPIOPin * getBluePin(); 

Returns a reference to the GPIOPin used to control the blue component of the led. 

Parameters: 

• <none> 

Returns: 

• Reference to the GPIOPin for the blue component 

6.4.2.11. void setActiveLow(bool actLow); 

Sets whether the led uses active low control (i.e. a low value is output to turn a component on) or active 

high control (i.e. a high value is output to turn a component on). 

By default, activeLow is set to true as is used by the expansion dock led. 

Parameters: 

• bool actLow – sets whether activeLow is enabled or not 

Returns: 

• <none> 

6.4.2.12. bool isActiveLow(); 

Returns whether or not activeLow is set for the RGBLED. 

Parameters: 

• <none> 

Returns: 

• Whether or not activeLow is set 

7. Usage of the new-gpio Program 
The new-gpio program is used to perform a variety of operations on the GPIO pins. 

The new-gpio program accepts a set of parameters to control its operation.  As far as they are in 

common, the syntax of these parameters is the same as is used for the existing fast-gpio program. 

The program will document its usage when the command new-gpio help is used. 



In addition, the usage is shown whenever any errors are detected in the parameters. 

The usage information displayed is: 

Usage 
Commands - one of: 
        ./new-gpio set-input <pin> 
                Sets pin to be an input pin 
        ./new-gpio set-output <pin> 
                Sets pin to be an output pin 
        ./new-gpio get-direction <pin> 
                Gets and returns pin direction 
        ./new-gpio read <pin> 
                Gets and returns input pin value 
        ./new-gpio set <pin> <val> 
                Sets output pin value 
        ./new-gpio pwm <pin> <freq> <duty> 
                Starts PWM output on pin 
        ./new-gpio pwmstop <pin> 
                Stops PWM output on pin 
        ./new-gpio irq <pin> <irqtype> <irqcmd> <debounce> 
                Enables IRQ handling on pin 
        ./new-gpio irqstop <pin> 
                Terminates IRQ handling on pin 
        ./new-gpio expled <ledhex> 
                Starts output to expansion led 
        ./new-gpio expledstop 
                Terminates output to expansion led 
        ./new-gpio info <pin> 
                Displays information on pin(s) 
        ./new-gpio help 
                Displays this help information 
Where: 
        <pin> is one of 
                0, 1, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 23, 26, all 
                A <pin> of all can only be used for: 
                        info, set-input, set-output, set 
        <val> is only required for set: 
                <val> is 0 or 1 
        <freq> is PWM frequency in Hz > 0 
        <duty> is PWM duty cycle % in range 0 to 100 
        <irqtype> is the type for IRQ and is one of: 
                falling, rising, both 
        <irqcmd> is the shell command to be executed when the IRQ occurs 
                Must be enclosed in " characters if it contains 
                spaces or other special characters 
                If it starts with the string [debug], 
                debug output is displayed first 
        <debounce> is optional debounce time for IRQ in milliseconds 
                Defaults to 0 if not supplied 
        <ledhex> specifies the hex value to be output to expansion led 
                Must be a six digit hex value with or without leading 0x 
                The order of the hex digits is: rrggbb 

 

Notes: 

1. The return value from the command will be one of the following: 

• 255 (-1) – indicates an error has occurred – either in the parameters or in executing the 

command 

• 0 – indicates normal successfully completion for an operation (<op>) other than get or 

getd 

• For a successful get operation: 



o 0 – indicates the pin is off 

o 1 – indicates the pin is on 

• For a successful getd operation: 

o 0 – indicates the pin is an input pin 

o 1 – indicates the pin is an output pin 

 

2. When the pwm operation is used, the program forks a separate process to perform the PWM 

output. 

This separate process continues after the program returns until such time as the pwmstop 

operation is performed on the same pin. 

The ID of the separate process can be discovered by running: 

new-gpio info <pin-number> 

 

3. When the irq operation is used, the program forks a separate process to monitor and respond 

to pin state changes. 

Each time the relevant pin undergoes the relevant change in state, the <irqcmd> command 

specified is run. 

This separate process continues after the program returns until such time as the irqstop 

operation is performed on the same pin. 

The ID of the separate process can be discovered by running: 

new-gpio info <pin-number> 

 

4. When the expled operation is used, the program forks a separate process to perform the 

expansion led output. 

This separate process continues after the program returns until such time as the expledstop 

operation is performed. 

The ID of the separate process can be discovered by running: 

new-gpio info <pin-number> 

Where <pin-number> is one of the expansion led pins: 15, 16, 17 or all 

8. Usage of the new-expled Program 
The new-expled program is used to control the led on the expansion dock. 

The new-expled program accepts a parameter to set the colour of the led.  The new_expled program 

provides exactly the same functionality as the existing expled script except that it is wriiten in C++ and 

uses libnew-gpio. 

The program will document its usage when the command new-expled help is used. 

In addition, the usage is shown whenever any errors are detected in the parameters. 

The usage information displayed is: 

Usage 
Commands - one of: 
        ./new-expled <ledhex> 



                Starts output to expansion led 
        ./new-expled stop 
                Terminates output to expansion led 
        ./new-expled help 
                Displays this usage information 
Where: 
        <ledhex> specifies the hex value to be output to expansion led 
                Must be a six digit hex value with or without leading 0x 
                The order of the hex digits is: rrggbb 

 

Note: 

1. When the new-expled is run to set the led, the program forks a separate process to perform the 

expansion led output. 

This separate process continues after the program returns until such time as the new-expled 

stop command is run. 

The ID of the separate process can be discovered by running the new-gpio command: 

new-gpio info <pin-number> 

Where <pin-number> is one of the expansion led pins: 15, 16, 17 or all 

 

2. In relation to new-gpio, the following two commands are directly equivalent: 

• new-expled <ledhex> 

• new-gpio expled <ledhex> 

As are these two: 

• new-expled stop 

• new-gpio expledstop 

9. Further Development 
Development of new-gpio is on-going.  There will be changes and additions to the code in the future. 

9.1. For the Future 
In addition, it is intended that further work be done in the future based on new-gpio.  In particular: 

• Similar code for i2c access 

• Java class wrappers that will provide access to GPIO and i2c from Java on the Omega 


